EPA Smart School Siting Tool

A new tool to help communities site schools that promote healthy learning and community well-being

Association For Learning Environments Global Conference

Philadelphia, PA

Workshop: September 29, 2016

Today's Facilitators

Regina Langton

Senior Policy Analyst
U.S. EPA
Office of Sustainable Communities
(202) 566-2178
langton.regina@epa.gov

Kate Marshall

Director Land & Sustainability Programs
Corporate Sustainability Director
CSRA, Inc
(571) 290-4475
kate.marshall@csra.com

Nick Salmon
REFP
Collaborative Learning Network, LLC
@NicksSalmon
406.529.5192
nicksalmon@collaborativelearningnetwork.com

Agenda

1:30-1:35 Welcome & Introductions

1:35-1:45 Table Team Exercise #1: Your site selection process

1:45-1:50 Whole Group Reflections & Insights

1:50-2:00 Overview of Smart School Siting Tool

2:00-2:30 Table Team Exercise #2: Community Priorities

2:30-2:50 Table Team Exercise #3: Fictional Sites

2:50-3:00 Whole Group Reflections & Insights

3:00-3:10 Case Studies

3:10-3:30 Table Team Exercise #4: Snapshot

3:30-3:40 Whole Group Reflections & Insights

3:40-3:50 Site Comparison Workbook Demonstration

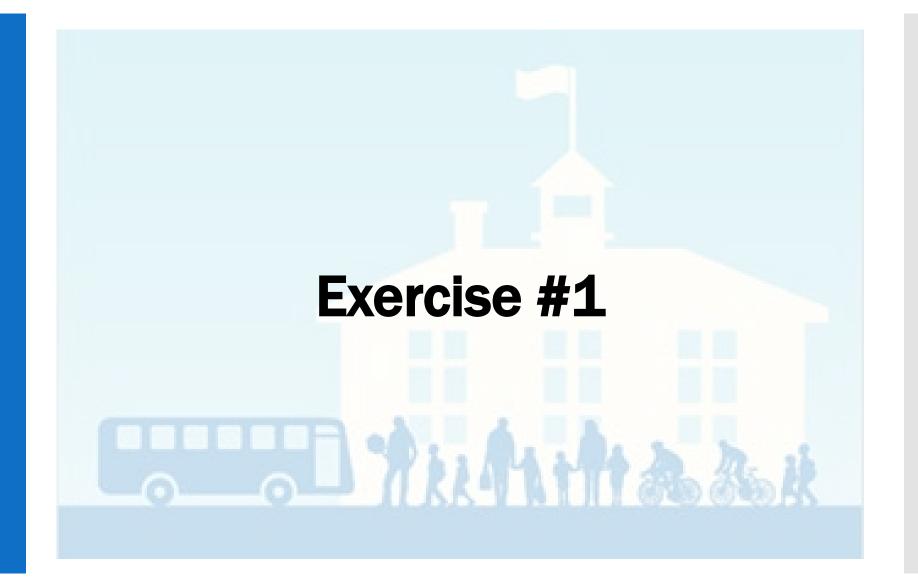
3:50-4:20 Table Team Exercise #5: Workbook Detail

4:20-4:30 Whole Group Reflections & Insights/Adjourn

1:35-1:45

Table Team Exercise #1:

Characterize your site selection process

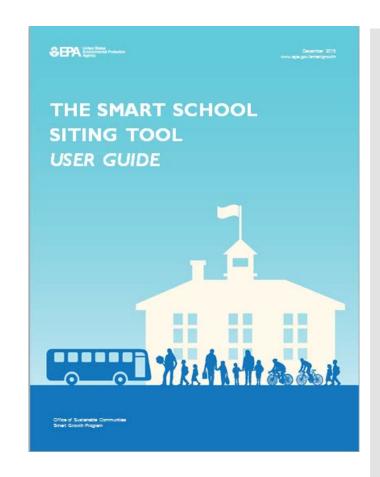

What types of school sites are typically considered?

How are school sites compared?

Who is involved in identifying and evaluating potential sites?

Who makes the decision?

Reflections & Insights


Overview of Smart School Siting Tool

1:50-2:00

Smart School Siting Tool Key Objectives

The tool is designed to...

- Engage a more diverse group of stakeholders
- Encourage more holistic analysis of siting decision implications
- Foster and facilitate collaboration
- Support (not supplant)
 community decision-making

Available at:

http://www.epa.gov/smartgrowth/smart-school-siting-tool

Smart School Siting Tool When To Use It

School Siting Timeline

Prepare Identify need Evaluate options Select site

Assessment & Planning Workbook

Helps communities prepare for siting decisions by assessing coordination between school siting and other planning processes

Site Comparison Workbook

Helps communities compare and evaluate school siting alternatives, including renovation, expansion, and new construction

User Guide

- Background on smart school siting
- Overview of the Smart School Siting Tool
- How to use the Workbooks
- Glossary and resources

Description How To Use It: **Two Separate** Workbooks

Assessment & Planning Workbook

Helps communities prepare for siting decisions by assessing coordination between school siting and other planning processes

One workbook per community

Assessment Plans & Codes, Site Selection Criteria,

and Siting Process

Assessment Summary, Set Priorities, Results

Develop Action Plan worksheet

Prepare

Identify need

Evaluate options Select site

Site Comparison Workbook

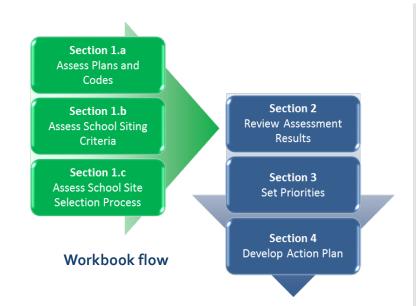
One workbook per site

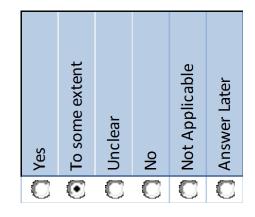
25 questions, 2cost calculator **Assessment**

worksheets

Results One page site summary, Detailed

summary report


Helps communities compare and evaluate school siting alternatives, including renovation, expansion, and


new construction

Smart School Siting Tool Assessment & Planning Workbook

Design:

- User-friendly downloadable Excel file
- Three assessment sections with ~200 closed ("select one") questions, with space for comments
- Baseline vs enhanced planning
- Summary, priority-setting, and action planning worksheets

Answer choices

Assessment areas:

- Coordination between school and community plans and codes
- Alignment of school siting criteria and community planning priorities
- Coordination between school siting and community planning processes

Assessment & Planning Workbook Overview and Information Needs

Workbook Section	Information Needs
Plans and codes	 School system plans: Long-range facilities plan Capital improvements plan Community plans and codes: Comprehensive plan Zoning and building codes Local and regional transportation plans Community capital improvement plan
School siting criteria	Existing school siting criteria
Site selection process	Process used to select school sites

Site Comparison Workbook Site Comparison Factors

Comparison Factors		Community Implications			
Criteria Category	Example Considerations	Healthy environment	Social well- being	Active, healthy lifestyles	Cost efficient
Proximity to students and population	Near existing studentsNear dense residential areasNear future planned density	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>
Availability/ adequacy of infrastructure	Water/sewer infrastructureRoad/drainage infrastructureConsistency with capital plan	<u>✓</u>			<u>√</u>
Neighborhood schools	 Renovation Environmental improvement Serve underserved population Right-sized, shared use 	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>
Street connectivity and site access	Street grid/accessibilityTravel lanes and trafficPhysical barriers	<u>✓</u>		<u>√</u>	
Pedestrian and bike facilities and safety	Sidewalks/bike path facilities and connectivityIntersection safety	<u>✓</u>	<u>√</u>	<u>√</u>	

Putting it into Action... Smart School Siting Workshops

Planning & Assessment Workshop

Workbook-facilitated...

- Collaborative assessment
- Facilitated prioritization exercise
- Action planning
- Monitoring agreements

Site Comparison Workshop

Workbook-facilitated...

- Open-ended priority-setting exercise
- Collaborative site assessment
- Facilitated comparative site evaluation

2:00-2:30

Table Team Exercise #2: Identifying Community Priorities for School Siting

Adopt one of six roles:

Learner, Teacher, Administrator, Trustee,
Parent/Grandparent, Business/Community Leader

Review the cards which list different community values... related to community context, community development, and environmental considerations

Rank the cards represent your group values from most to least important

NOISE

[environmental]

nearby industrial, roadway, other sources of noise pollution or distraction

[environmental]

AIR QUALITY

[environmental]

nearby mobile sources such as high traffic highways or roadways

[environmental]

SERVED BY EXISTING INFRASTUCTURE

[community development]

water, sewer, stormwater, roadway capacity

[community development]

CAN SITE BE REPURPOSED IF CLOSED?

[community development]

[community development]

REUSE OF EXISTING PROPERTY INVENTORY

[community context]

MULTI-USE/ FUNCTION OPPORTUNITIES

[community context]

a property already owned by school district, whether containing structures or not

[community context]

can serve as an emergency shelter, community meeting space, recreation

[community context]

2:30-2:50

Exercise #3: Fictional Sites

Remain in your roles:

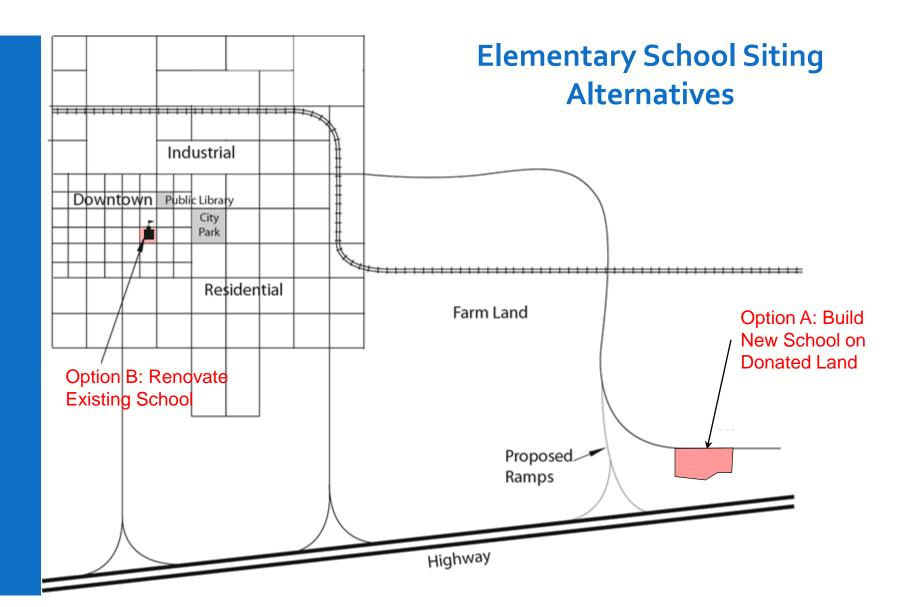
Learner, Teacher, Administrator, Trustee,
Parent/Grandparent, Business/Community Leader

Think about what's important to you in selecting a school site

Advocate for your priorities in your group as you evaluate two sites

The Need

The existing elementary school has exceeded its useful life


- Not a healthy learning environment
- Too small for ballfields and other recreation

The Alternatives

The school board's siting committee has identified two options

Option A: Build a new school on donated land

Option B: Renovate the existing school

High-Level Summary of Alternatives

	Option A: Build New School	Option B: Renovate Existing School
General description	Build new school on 30 acres of farm land to be donated by developer to the community with approval of a new housing development.	Rebuild as a high performing school after demolishing the interior and abating hazards. Need to identify alternatives to balance on-site recreation, parking, and other needs.
Cost Estimate	\$30M Includes site preparation, new construction of building and grounds	\$35M Includes building renovation, other site construction costs, temporary facilities for students
Pros	 Plenty of room for ballfields, parking, etc. No land acquisition costs Nice setting Will serve the new development 	 Preserve the "old school" in the downtown No land acquisition costs Close to existing students
Cons	Hard to get thereClose to the highway	 Complicated construction, could be disruptive for downtown Not enough room for ballfields Temporary classrooms

Table Team Discussion

Which option would you prefer? Why?

What do you agree on?

What do you not agree on?

What more would you like to know?

How should the decision be made?

How do you think the decision will be made?

Reflections & Insights

Case Studies

3:00-3:10

Case Studies

What factors should we consider?

- Proximity to students and existing population
- Consistency with community development plans
- Beneficial site characteristics, e.g.,
 - Contribution to the quality of neighborhood
 - Shared use opportunities
- Bikability and walkability
- Air quality
- Cost
 - Borne by the school district
 - Other costs (roads, water and sewer, transportation, etc.)
- What else?

What factors are most important?

FRANKLIN Right Location/ Wrong School

Expanded 5 times in 99 years


Rapidly Changing/Infill Neighborhood

Use of Existing Street Network

Franklin Case Study Result

Rebuild New Elementary on Existing Site

- Neighborhood is well defined by 4 major streets, resulting in less than ½ mile walk to school
- Proximity to city bus service
- Reinvestment in low SES neighborhood
- Two story school uses 0.5 acre, remaining 1.5 acres of open space
- Cost savings associated with existing utilities
- Utilize existing streets for pick-up/drop-off, parking
- Community-based team advocated for alternative that reflected their values

Lower Miller Creek:

Flat Site

Adjacent dense development

Within Urban Growth Boundary

Awaiting Annexation

Least overlap with adjacent attendance area

Marilyn Park:

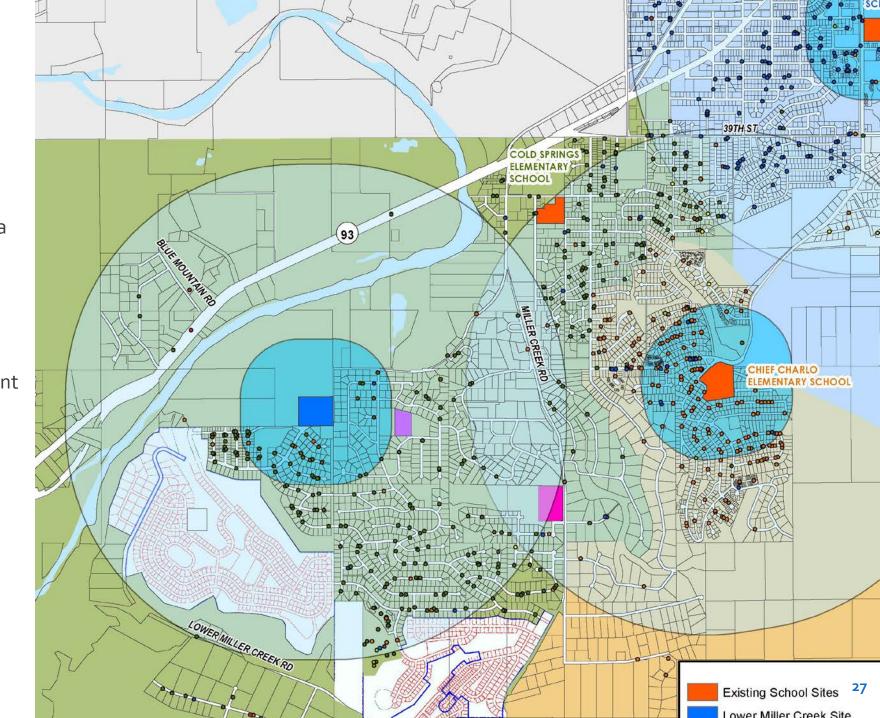
Sloping site with no access

Required swap with developed city park

Single neighborhood collector street adjacent

Parking challenges

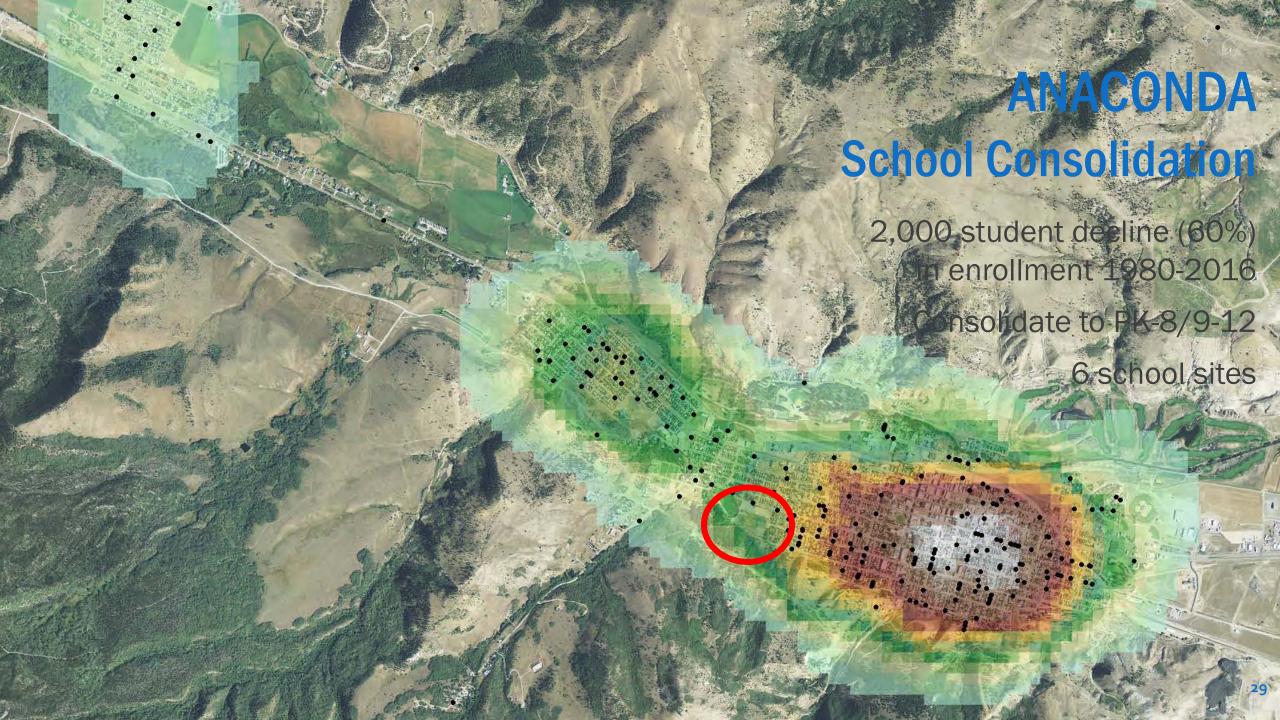
Overlap with adjacent attendance area


Meriwether:

Large site

Limited access from adjacent street

Major neighborhood collector


Significant overlap with adjacent attendance area

Cold Springs Case Study Result

Rebuild New Elementary on New Site (Lower Miller Creek)

- Within Urban Growth Boundary
- Adjacent fire station, future neighborhood commercial
- Adjacent to two established neighborhoods with trails & parks
- Accessible Site
- City master plan anticipates high density when annexed
- Reinforced need for community engagement

Busy Highway

Proximity

Re-use of former school site

Smart Growth
Smart School Siting Tool: Site Comparison Workbook

SUMMARY

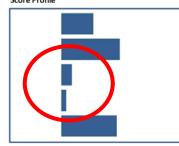
Building & Grounds Planning, Anaconda School District #10

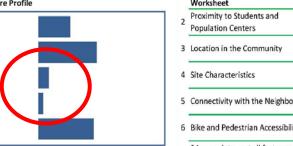
District Administration/PK/VOED

New school construction 1410 Park Avenue West

Description	
Grades to be served:	PK-5
Planned enrollment:	532

Access to Highway 1


Key Characteristics


Evicting	School	Cito
Existing	SCHOOL	Sife

• Potential re-use for residential/commercial development

	Worksheet	Overall Score
2	Proximity to Students and Population Centers	30
3	Location in the Community	96
4	Site Characteristics	18
5	Connectivity with the Neighborhood	4
6	Bike and Pedestrian Accessibility	40
	* Incomplete: not all factors scored	

Score Profile

Smart School Siting Tool: Site Comparison Workbook

SUMMARY

Building & Grounds Planning, Anaconda School District #10

Lincoln Elementary School

School renovation or expansion

506 Chestnut

Description

Planned enrollment:

Key Characteristics

Grades to be served: 3-5

Existing School Site

· Access on four adjacent streets

Utilities bisect site

Site Scores (should be compared against the <u>site scores</u> generated for other candidate sites)

	Worksheet	Overall Score
2	Proximity to Students and Population Centers	96
3	Location in the Community	84
4	Site Characteristics	75
5	Connectivity with the Neighborhood	66
6	Bike and Pedestrian Accessibility	46
	* Incomplete: not all factors scored	

'Incomplete: not all factors scored

Score Profile

Description Grades to be served: Planned enrollment:

SUMMARY

Mitchell Stadium

West Fifth Street

New school construction

Key Characteristics

PK-5

Building & Grounds Planning, Anaconda School District #10

Largest school site

Smart School Siting Tool: Site Comparison Workbook

Access on two adjacent streets

• former site of Washington School

· Large shared parking area

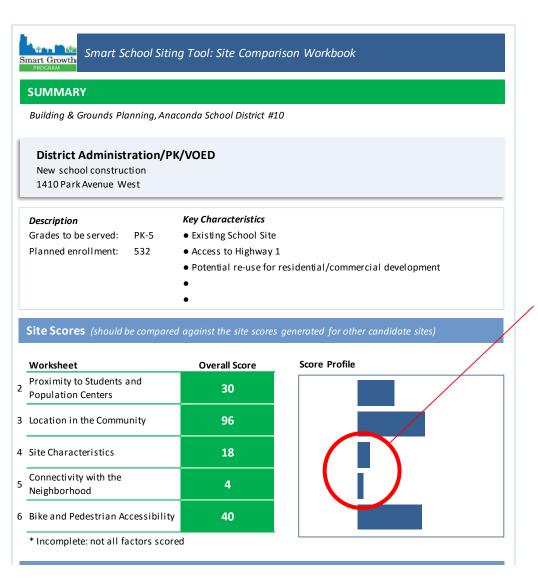
	Worksheet	Overall Score
2	Proximity to Students and Population Centers	42
3	Location in the Community	60
4	Site Characteristics	36
5	Connectivity with the Neighborhood	35
6	Bike and Pedestrian Accessibility	40
	* Incomplete: not all factors scored	

Estimated Costs

Borne By	One-time Capital Cost	Annual Cost
Local government		
Local school agency		
Developers		
Households		

* Incomplete: not all cost information available

Estimated Costs

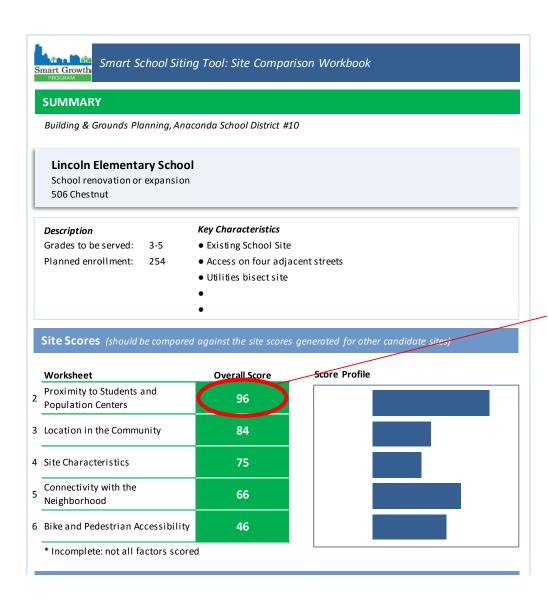

cal school agency	Borne By	One-time Capital Cost	Annual Cost
	ocal government		
velopers	ocal school agency		
	evelopers		
useholds	ouseholds		

Estimated Costs

available

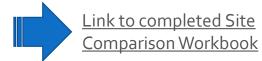
Incomplete: not all cost information available

Anaconda Case Study District Admin Option (Busy Highway)

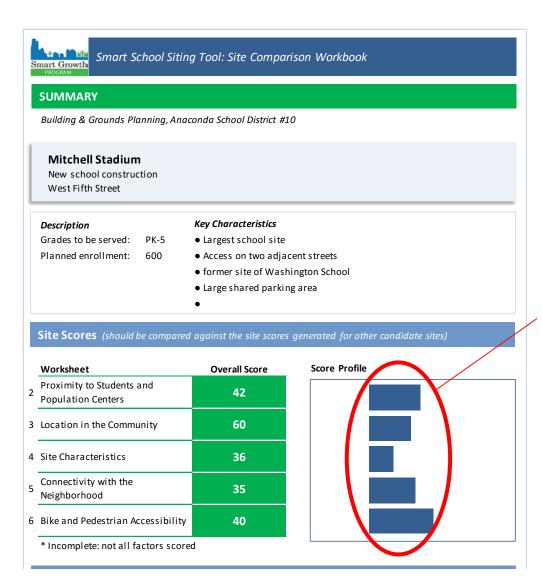


Assessment

- Highway isolates school from most neighborhoods
- Could sell property (location better for commercial use)



Anaconda Case Study Lincoln Elementary Option (Proximity to students)



Assessment

- Strong proximity, but...
- Small site with no open space
- Bisected by utilities
- Pick-up/drop-off challenges
- Parking challenges



Anaconda Case Study Mitchell Stadium Option (Reuse of former school site)

Assessment

- Re-use of brownfield site
- Re-develop former school site
- Shared use between School/City
- Large site with PK-12 opportunities
- Average scores throughout

Anaconda Case Study Result

Rebuild New Elementary on Former School Site

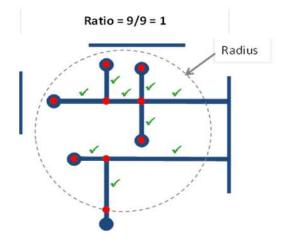
- Community dialogue regarding values and worksheet results
- Middle of community (less than 1 mile walk)
- Two adjacent streets for access
- Share parking with football/soccer/softball/track &field
- Re-developed brownfield
- · Water, sewer, power & data on site
- Sell Administration site for commercial development
- Sell Dwyer to city to expand park
- Sell Lincoln to Head Start/Boys & Girls, retain use of gym
- Revitalize downtown high school facility

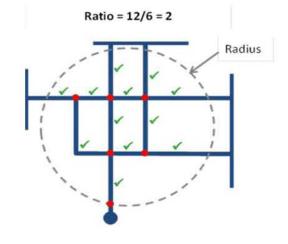
Table Team Exercise #4: Snapshot

3:10-3:30

Think of a school site you are currently working with Look it up on Google Earth

Score the site on the sheet provided


EPA Smart School Siting Tool for a Safe and Healthy Community



Worksheet 5: Connectivity with the Neighborhood

17. What is the ratio of streets ("links") to intersections ("nodes") near the school site?

The ratio of streets to intersections is a measure of neighborhood connectivity. The higher the ratio, the greater the neighborhood's connectivity. Greater connectivity can provide more travel route options to get from one point to another, and can distribute traffic more evenly. It can also reduce travel time, whether walking, biking, or riding in a vehicle.

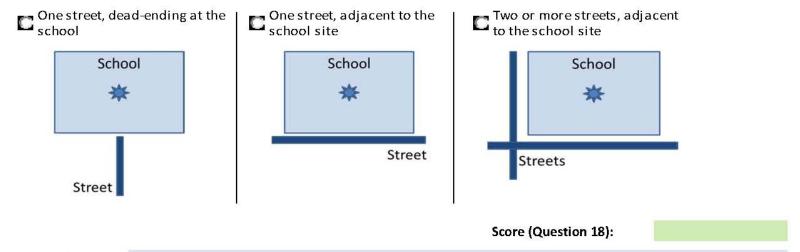
Glossary

Resources

You must enter school type on Worksheet 1 before completing this question

Score (Question 17):

Comments/Notes:


Show Instructions for Question 17

omments, roces.

18. How many streets service the school site?

A school site that is accessed by multiple streets allows cars, buses, walkers, and bikers to approach the school from different directions, which can help reduce congestion. A site with two or more streets adjacent to the school site indicates a site that may be

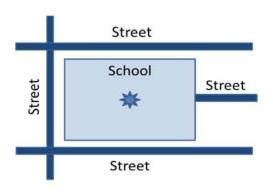
Select the scenario that most closely represents the school site:

Comments/Notes:

19. How many travel lanes do the streets accessing the school site have?

Streets that are wide, have high posted speed limits, or support heavy traffic are the most significant barriers that prevent children from walking or bicycling to school. Multi-lane streets can expose walkers and bikers to a greater risk of injury since these streets tend to have more traffic and can take longer to cross.

How many travel lanes do the streets accessing the school site have?


2 or More= 8
1 Adjacent= 4
Dead End= 0

Show Instructions for Question 19

19. How many travel lanes do the streets accessing the school site	have?)
--	-------	---

Streets that are wide, have high posted speed limits, or support heavy traffic are the most significant barriers that prevent children from walking or bicycling to school. Multi-lane streets can expose walkers and bikers to a greater risk of injury since these streets tend to have more traffic and can take longer to cross.

How many travel lanes do the streets accessing the school site have?

Street 2
Street 3
Street 4

Score (Question 19):

Comments/Notes:

20. Through how many sides of the school site can walkers and bikers enter?

Having access to a school site from multiple sides can reduce the need to walk or bike around the perimeter of the site to access the entrance.

Through how many sides of the school site can walkers and bikers enter?

Score (Question 20):

Comments/Notes:

21. Do physical barriers limit access to the school site?

Show Instructions for Question 19

2 lanes=8 3-4 lanes=0 5 lanes=-8

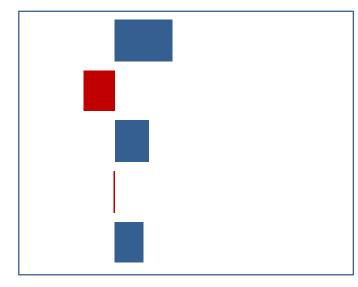
20. Through how many sides of the school site can walkers and bikers enter?						
Having access to a school site from multiple sides can reduce the need to walk or bike around the perimeter of the site to access the entrance.						
Through how many sides of the school site can walkers and bikers enter?						
Score (Question 20):						
Comments/Notes:						
21. Do physical barriers limit access to the school site?						
Physical barriers are things that discourage people from walking and biking, even if the distance traveled is short. Examples include railroad tracks, highways, large industrial sites, roads with speed limits higher than 40 miles per hour, water bodies, and steep terrain. Some physical barriers may require "safety busing" to safely transport children to school. Generally speaking, the closer a physical barrier is to the school, the more safety busing is required. School sites located in areas with few or no physical barriers						
Within a 1/2-mile radius of the school site, how many physical barriers limit access to the school site? Score (Question 21):						
Comments/Notes:						

Go to Worksheet 6

3 Sides= 6 2 sides= 3 1 side= 0

No barriers= 12 1-2 barriers= 0 3 barriers= (-12)

What was your score?


- MAX High +66/ MAX Low -44
- Share your observations
- What issues emerged?

Site Scores (should be compared against the site scores generated for other candidate sites)

	Worksheet	Overall Score
2	Proximity to Students and Population Centers	29
3	Location in the Community	-28
4	Site Characteristics	31
5	Connectivity with the Neighborhood	-1
6	Bike and Pedestrian Accessibility	11
	* Incomplete, not all factors seems	

* Incomplete: not all factors scored

Score Profile

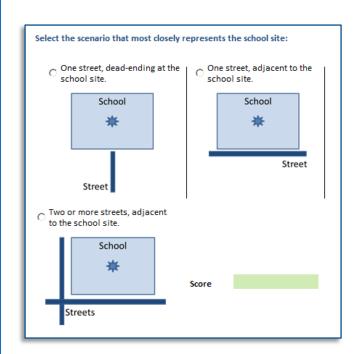
Reflections & Insights

Site Comparison Workbook Detail

3:40-3:50

Site Comparison Workbook Overview and Information Needs

Workbook Section	Information Needs
Description of school need and site	District and site identifiersGrades to be served, capacity
Proximity to students and population	 District demographics Geographic information Neighborhood demographics
Location in the community	Community development plansInfrastructure
Site characteristics	Potential neighborhood impactsShared use opportunities
Connectivity with neighborhood	Neighborhood street network
Bike and pedestrian accessibility	 Condition and safety of pedestrian and bike networks/facilities
Cost calculators	 Planning-level capital cost estimates (by source of funds) Planning-level O&M cost estimates (by who pays)


Site Comparison Workbook Demonstration

Design:

- User-friendly downloadable Excel file
- Site summary sheet, 5 worksheets with 25 multiple choice questions, and two cost calculators
- High-level and detailed summary sheets

Workbook navigation aid

Typical question format

Site comparison factors:

- Proximity to students and population centers
- Location in the community
- Beneficial site characteristics
- Connectivity with the neighborhood
- Bike and pedestrian accessibility
- One-time capital and recurring annual costs

Table Team Exercise #5:

Workbook Detail

3:50-4:20

Utilize the site you considered for Exercise #4


Open a live version of the workbook

Enter data for as many areas as possible

Utilize comments section as placeholder for insights

Change responses to compare outcomes

Reflections & Insights

Conclusion Why Use the Smart School Siting Tool

The tool...

- Identifies opportunities and reasons to collaborate
- Includes questions of interest to different stakeholders
- Helps organize and synthesize information
- Helps focus dialogue and facilitate collaboration

To...

- Engage a more diverse group of stakeholders
- Encourage more holistic analysis of opportunities and impacts
- Foster and facilitate collaboration
- Support (not supplant) community decision-making

Closing Thoughts

Why will you apply what you have learned today?

How will you share your results with others?

How can this tool be more effective?

What would make it easy to get this tool in use across the nation?

What would motivate communities to use this tool?

What other information should be considered?

For More Information

The Smart School Siting Tool is available at:

http://www.epa.gov/smartgrowth/smart-school-siting-tool

For more information, please contact:

Regina Langton

EPA Office of Sustainable Communities Washington, DC (202) 566-2178

langton.regina@epa.gov