EPA Smart School Siting Tool
A new tool to help communities site schools that promote healthy learning and community well-being

Association For Learning Environments Global Conference
Philadelphia, PA
Workshop: September 29, 2016
Today’s Facilitators

Regina Langton
Senior Policy Analyst
U.S. EPA
Office of Sustainable Communities
(202) 566-2178
langton.regina@epa.gov

Kate Marshall
Director Land & Sustainability Programs
Corporate Sustainability Director
CSRA, Inc
(571) 290-4475
kate.marshall@csra.com

Nick Salmon
REFP
Collaborative Learning Network, LLC
@NicksSalmon
406.529.5192
nicksalmon@collaborativelearningnetwork.com
1:30-1:35 Welcome & Introductions
1:35-1:45 Table Team Exercise #1: Your site selection process
1:45-1:50 Whole Group Reflections & Insights
1:50-2:00 Overview of Smart School Siting Tool
2:00-2:30 Table Team Exercise #2: Community Priorities
2:30-2:50 Table Team Exercise #3: Fictional Sites
2:50-3:00 Whole Group Reflections & Insights
3:00-3:10 Case Studies
3:10-3:30 Table Team Exercise #4: Snapshot
3:30-3:40 Whole Group Reflections & Insights
3:40-3:50 Site Comparison Workbook Demonstration
3:50-4:20 Table Team Exercise #5: Workbook Detail
4:20-4:30 Whole Group Reflections & Insights/Adjourn
Table Team Exercise #1:
Characterize your site selection process

What types of school sites are typically considered?
How are school sites compared?
Who is involved in identifying and evaluating potential sites?
Who makes the decision?
Reflections & Insights

Exercise #1
Overview of Smart School Siting Tool
The tool is designed to...

- Engage a more diverse group of stakeholders
- Encourage more holistic analysis of siting decision implications
- Foster and facilitate collaboration
- Support (not supplant) community decision-making

Available at:
http://www.epa.gov/smartgrowth-smart-school-siting-tool
School Siting Timeline

Prepare	**Identify need**	**Evaluate options**	**Select site**
Assessment & Planning Workbook
Helps communities prepare for siting decisions by assessing coordination between school siting and other planning processes

Site Comparison Workbook
Helps communities compare and evaluate school siting alternatives, including renovation, expansion, and new construction

User Guide
- Background on smart school siting
- Overview of the Smart School Siting Tool
- How to use the Workbooks
- Glossary and resources
How To Use It:
Two Separate Workbooks

Assessment & Planning Workbook
- Helps communities prepare for siting decisions by assessing coordination between school siting and other planning processes
- **One workbook per community**
 - **Assessment**: Plans & Codes, Site Selection Criteria, and Siting Process
 - **Results**: Assessment Summary, Set Priorities, Develop Action Plan worksheet

Prepare | Identify need | Evaluate options | Select site

Site Comparison Workbook
- Helps communities compare and evaluate school siting alternatives, including renovation, expansion, and new construction
- **One workbook per site**
 - **Assessment**: 25 questions, cost calculator worksheets
 - **Results**: One page site summary, Detailed summary report
Design:
- User-friendly downloadable Excel file
- Three assessment sections with ~200 closed (“select one”) questions, with space for comments
- Baseline vs enhanced planning
- Summary, priority-setting, and action planning worksheets

Assessment areas:
- Coordination between school and community plans and codes
- Alignment of school siting criteria and community planning priorities
- Coordination between school siting and community planning processes
Workbook Section Information Needs

<table>
<thead>
<tr>
<th>Workbook Section</th>
<th>Information Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans and codes</td>
<td>Familiarity with/access to...</td>
</tr>
<tr>
<td></td>
<td>• School system plans:</td>
</tr>
<tr>
<td></td>
<td>• Long-range facilities plan</td>
</tr>
<tr>
<td></td>
<td>• Capital improvements plan</td>
</tr>
<tr>
<td></td>
<td>• Community plans and codes:</td>
</tr>
<tr>
<td></td>
<td>• Comprehensive plan</td>
</tr>
<tr>
<td></td>
<td>• Zoning and building codes</td>
</tr>
<tr>
<td></td>
<td>• Local and regional transportation plans</td>
</tr>
<tr>
<td></td>
<td>• Community capital improvement plan</td>
</tr>
<tr>
<td>School siting criteria</td>
<td>Existing school siting criteria</td>
</tr>
<tr>
<td>Site selection process</td>
<td>Process used to select school sites</td>
</tr>
<tr>
<td>Criteria Category</td>
<td>Example Considerations</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Proximity to students and population | • Near existing students
• Near dense residential areas
• Near future planned density | ✅ | ✅ | ✅ | ✅ |
| Availability/ adequacy of infrastructure | • Water/sewer infrastructure
• Road/drainage infrastructure
• Consistency with capital plan | ✅ | | | ✅ |
| Neighborhood schools | • Renovation
• Environmental improvement
• Serve underserved population
• Right-sized, shared use | ✅ | ✅ | ✅ | ✅ |
| Street connectivity and site access | • Street grid/accessibility
• Travel lanes and traffic
• Physical barriers | ✅ | | | |
| Pedestrian and bike facilities and safety | • Sidewalks/bike path facilities and connectivity
• Intersection safety | ✅ | ✅ | | |
Putting it into Action…

Smart School Siting Workshops

Planning & Assessment Workshop

Workbook-facilitated…

- Collaborative assessment
- Facilitated prioritization exercise
- Action planning
- Monitoring agreements

Site Comparison Workshop

Workbook-facilitated…

- Open-ended priority-setting exercise
- Collaborative site assessment
- Facilitated comparative site evaluation
Table Team Exercise #2: Identifying Community Priorities for School Siting

Adopt one of six roles:
- Learner, Teacher, Administrator, Trustee,
- Parent/Grandparent, Business/Community Leader

Review the cards which list different community values... related to community context, community development, and environmental considerations

Rank the cards represent your group values from most to least important
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>Nearby industrial, roadway, other sources of noise pollution or distraction</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Nearby mobile sources such as high traffic highways or roadways</td>
</tr>
<tr>
<td>Served by Existing Infrastructure</td>
<td>Water, sewer, stormwater, roadway capacity</td>
</tr>
<tr>
<td>Can Site Be Repurposed If Closed?</td>
<td></td>
</tr>
<tr>
<td>Reuse of Existing Property Inventory</td>
<td>A property already owned by a school district, whether containing structures or not</td>
</tr>
<tr>
<td>Multi-Use/Function Opportunities</td>
<td>Can serve as an emergency shelter, community meeting space, recreation</td>
</tr>
</tbody>
</table>
Exercise #3: Fictional Sites

Remain in your roles:
Learner, Teacher, Administrator, Trustee, Parent/Grandparent, Business/Community Leader

Think about **what’s important to you** in selecting a school site

Advocate for your priorities in your group as you evaluate two sites
The Need
The existing elementary school has exceeded its useful life
- Not a healthy learning environment
- Too small for ballfields and other recreation

The Alternatives
The school board’s siting committee has identified two options

Option A: Build a new school on donated land
Option B: Renovate the existing school
Elementary School Siting Alternatives

Option A: Build New School on Donated Land

Option B: Renovate Existing School
High-Level Summary of Alternatives

<table>
<thead>
<tr>
<th></th>
<th>Option A: Build New School</th>
<th>Option B: Renovate Existing School</th>
</tr>
</thead>
<tbody>
<tr>
<td>General description</td>
<td>Build new school on 30 acres of farm land to be donated by developer to the community with approval of a new housing development.</td>
<td>Rebuild as a high performing school after demolishing the interior and abating hazards. Need to identify alternatives to balance on-site recreation, parking, and other needs.</td>
</tr>
<tr>
<td>Cost Estimate</td>
<td>$30M Includes site preparation, new construction of building and grounds</td>
<td>$35M Includes building renovation, other site construction costs, temporary facilities for students</td>
</tr>
<tr>
<td>Pros</td>
<td>• Plenty of room for ballfields, parking, etc.</td>
<td>• Preserve the “old school” in the downtown</td>
</tr>
<tr>
<td></td>
<td>• No land acquisition costs</td>
<td>• No land acquisition costs</td>
</tr>
<tr>
<td></td>
<td>• Nice setting</td>
<td>• Close to existing students</td>
</tr>
<tr>
<td></td>
<td>• Will serve the new development</td>
<td></td>
</tr>
<tr>
<td>Cons</td>
<td>• Hard to get there</td>
<td>• Complicated construction, could be disruptive for downtown</td>
</tr>
<tr>
<td></td>
<td>• Close to the highway</td>
<td>• Not enough room for ballfields</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Temporary classrooms</td>
</tr>
</tbody>
</table>
Table Team Discussion

Which option would you prefer? Why?
What do you agree on?
What do you not agree on?
What more would you like to know?

How should the decision be made?
How do you think the decision will be made?
Reflections & Insights

Exercises #2 & #3
Case Studies
What factors should we consider?

- Proximity to students and existing population
- Consistency with community development plans
- Beneficial site characteristics, e.g.,
 - Contribution to the quality of neighborhood
 - Shared use opportunities
- Bikability and walkability
- Air quality
- Cost
 - Borne by the school district
 - Other costs (roads, water and sewer, transportation, etc.)
- What else?

What factors are most important?
FRANKLIN
Right Location/
Wrong School

Expanded 5 times in
99 years

Rapidly Changing/Infill
Neighborhood

Use of Existing Street
Network
Rebuild New Elementary on Existing Site

- Neighborhood is well defined by 4 major streets, resulting in less than ½ mile walk to school
- Proximity to city bus service
- Reinvestment in low SES neighborhood
- Two story school uses 0.5 acre, remaining 1.5 acres of open space
- Cost savings associated with existing utilities
- Utilize existing streets for pick-up/drop-off, parking
- Community-based team advocated for alternative that reflected their values
Cold Springs
Build Where?

Criteria:
- Site Size/Slope/Site Access
- Proximity to Existing Schools/Homes
- Neighborhood Amenities (trails, parks, crosswalks, etc)
- Urban Growth Boundary/Site Utilities
- Orientation
- Hazards
- Timing
Lower Miller Creek:
Flat Site
Adjacent dense development
Within Urban Growth Boundary
Awaiting Annexation
Least overlap with adjacent attendance area

Marilyn Park:
Sloping site with no access
Required swap with developed city park
Single neighborhood collector street adjacent
Parking challenges
Overlap with adjacent attendance area

Meriwether:
Large site
Limited access from adjacent street
Major neighborhood collector
Significant overlap with adjacent attendance area
Cold Springs Case Study

Result

Rebuild New Elementary on New Site (Lower Miller Creek)

- Within Urban Growth Boundary
- Adjacent fire station, future neighborhood commercial
- Adjacent to two established neighborhoods with trails & parks
- Accessible Site
- City master plan anticipates high density when annexed
- Reinforced need for community engagement
ANACONDA School Consolidation

2,000 student decline (60%) in enrollment 1980-2016

Consolidate to PK-8/9-12

6 school sites
Busy Highway

Re-use of former school site

Proximity

Site Scores (should be compared against the site scores generated for other candidate sites)

Worksheet	Overall Score	Score Profile
2 Proximity to Students and Population Centers | 30 | ![Score Profile Image]
3 Location in the Community | 96 | ![Score Profile Image]
4 Site Characteristics | 18 | ![Score Profile Image]
5 Connectivity with the Neighborhood | 4 | ![Score Profile Image]
6 Bike and Pedestrian Accessibility | 40 | ![Score Profile Image]

Estimated Costs

Borne By	One-time Capital Cost	Annual Cost
Local government | | |
Local school agency | | |
Developers | | |
Households | | |

* Incomplete: not all factors scored

Site Scores (should be compared against the site scores generated for other candidate sites)

Worksheet	Overall Score	Score Profile
2 Proximity to Students and Population Centers | 96 | ![Score Profile Image]
3 Location in the Community | 84 | ![Score Profile Image]
4 Site Characteristics | 75 | ![Score Profile Image]
5 Connectivity with the Neighborhood | 66 | ![Score Profile Image]
6 Bike and Pedestrian Accessibility | 46 | ![Score Profile Image]

Estimated Costs

Borne By	One-time Capital Cost	Annual Cost
Local government | | |
Local school agency | | |
Developers | | |
Households | | |

* Incomplete: not all cost information available

Site Scores (should be compared against the site scores generated for other candidate sites)

Worksheet	Overall Score	Score Profile
2 Proximity to Students and Population Centers | 42 | ![Score Profile Image]
3 Location in the Community | 60 | ![Score Profile Image]
4 Site Characteristics | 36 | ![Score Profile Image]
5 Connectivity with the Neighborhood | 35 | ![Score Profile Image]
6 Bike and Pedestrian Accessibility | 40 | ![Score Profile Image]

Estimated Costs

Borne By	One-time Capital Cost	Annual Cost
Local government | | |
Local school agency | | |
Developers | | |
Households | | |

* Incomplete: not all cost information available
Anaconda Case Study

District Admin Option
(Busy Highway)

Summary

Building & Grounds Planning, Anaconda School District #10

District Administration/PK/VOED
New school construction
1410 Park Avenue West

<table>
<thead>
<tr>
<th>Description</th>
<th>Key Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grades to be served: PK-5</td>
<td></td>
</tr>
</tbody>
</table>
Existing School Site
Access to Highway 1
Potential re-use for residential/commercial development |
| Planned enrollment: 532 | |

Site Scores
(should be compared against the site scores generated for other candidate sites)

<table>
<thead>
<tr>
<th>Worksheet</th>
<th>Overall Score</th>
<th>Score Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Proximity to Students and Population Centers</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2 Location in the Community</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>3 Site Characteristics</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4 Connectivity with the Neighborhood</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5 Bike and Pedestrian Accessibility</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Incomplete: not all factors scored

Assessment

- Highway isolates school from most neighborhoods
- Could sell property (location better for commercial use)

[Link to completed Site Comparison Workbook]
Anaconda Case Study

Lincoln Elementary Option (Proximity to students)

School: Lincoln Elementary School
Location: 506 Chestnut
Type: School renovation or expansion

Description:
- Grades to be served: 3-5
- Planned enrollment: 254
- Existing School Site
- Access on four adjacent streets
- Utilities bisect site

Site Scores *(should be compared against the site scores generated for other candidate sites)*

<table>
<thead>
<tr>
<th>Worksheet</th>
<th>Overall Score</th>
<th>Score Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Proximity to Students and Population Centers</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>2 Location in the Community</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>3 Site Characteristics</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>4 Connectivity with the Neighborhood</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>5 Bike and Pedestrian Accessibility</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

Incomplete: not all factors scored

Assessment
- Strong proximity, *but*...
- Small site with no open space
- Bisected by utilities
- Pick-up/drop-off challenges
- Parking challenges

[Link to completed Site Comparison Workbook]
Anaconda Case Study

Mitchell Stadium Option
(Reuse of former school site)

Summary

Building & Grounds Planning, Anaconda School District #10

Mitchell Stadium
New school construction
West Fifth Street

Description
- Grades to be served: PK-5
- Planned enrollment: 600

Key Characteristics
- Largest school site
- Access on two adjacent streets
- Former site of Washington School
- Large shared parking area

Site Scores
(should be compared against the site scores generated for other candidate sites)

<table>
<thead>
<tr>
<th>Worksheet</th>
<th>Overall Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Proximity to Students and Population Centers</td>
<td>42</td>
</tr>
<tr>
<td>2 Location in the Community</td>
<td>60</td>
</tr>
<tr>
<td>3 Site Characteristics</td>
<td>36</td>
</tr>
<tr>
<td>4 Connectivity with the Neighborhood</td>
<td>35</td>
</tr>
<tr>
<td>5 Bike and Pedestrian Accessibility</td>
<td>40</td>
</tr>
</tbody>
</table>

*Incomplete: not all factors scored

Score Profile

Assessment

- Re-use of brownfield site
- Re-develop former school site
- Shared use between School/City
- Large site with PK-12 opportunities
- Average scores throughout

Link to completed Site Comparison Workbook
Anaconda Case Study

Result

Rebuild New Elementary on Former School Site

- Community dialogue regarding values and worksheet results
- Middle of community (less than 1 mile walk)
- Two adjacent streets for access
- Share parking with football/soccer/softball/track & field
- Re-developed brownfield
- Water, sewer, power & data on site
- Sell Administration site for commercial development
- Sell Dwyer to city to expand park
- Sell Lincoln to Head Start/Boys & Girls, retain use of gym
- Revitalize downtown high school facility
Table Team Exercise #4:

Snapshot

Think of a school site you are currently working with
Look it up on Google Earth
Score the site on the sheet provided
17. What is the ratio of streets (“links”) to intersections (“nodes”) near the school site?

The ratio of streets to intersections is a measure of neighborhood connectivity. The higher the ratio, the greater the neighborhood’s connectivity. Greater connectivity can provide more travel route options to get from one point to another, and can distribute traffic more evenly. It can also reduce travel time, whether walking, biking, or riding in a vehicle.

You must enter school type on Worksheet 1 before completing this question

Score (Question 17):
18. How many streets service the school site?

A school site that is accessed by multiple streets allows cars, buses, walkers, and bikers to approach the school from different directions, which can help reduce congestion. A site with two or more streets adjacent to the school site indicates a site that may be

Select the scenario that most closely represents the school site:

- One street, dead-ending at the school
- One street, adjacent to the school site
- Two or more streets, adjacent to the school site

Score (Question 18):

Comments/Notes:

19. How many travel lanes do the streets accessing the school site have?

Streets that are wide, have high posted speed limits, or support heavy traffic are the most significant barriers that prevent children from walking or bicycling to school. Multi-lane streets can expose walkers and bikers to a greater risk of injury since these streets tend to have more traffic and can take longer to cross.

How many travel lanes do the streets accessing the school site have?
19. How many travel lanes do the streets accessing the school site have?

Streets that are wide, have high posted speed limits, or support heavy traffic are the most significant barriers that prevent children from walking or bicycling to school. Multi-lane streets can expose walkers and bikers to a greater risk of injury since these streets tend to have more traffic and can take longer to cross.

How many travel lanes do the streets accessing the school site have?

![Diagram of a school site with streets leading to it.]

<table>
<thead>
<tr>
<th>Street 1</th>
<th>Street 2</th>
<th>Street 3</th>
<th>Street 4</th>
</tr>
</thead>
</table>

Score (Question 19): [Blank]

Comments/Notes: [Blank]

20. Through how many sides of the school site can walkers and bikers enter?

Having access to a school site from multiple sides can reduce the need to walk or bike around the perimeter of the site to access the entrance.

Through how many sides of the school site can walkers and bikers enter?

![Diagram of the school site with access points.]

Score (Question 20): [Blank]

Comments/Notes: [Blank]

21. Do physical barriers limit access to the school site?

[Blank]
20. Through how many sides of the school site can walkers and bikers enter?

Having access to a school site from multiple sides can reduce the need to walk or bike around the perimeter of the site to access the entrance.

Through how many sides of the school site can walkers and bikers enter?

Score (Question 20):

Comments/Notes:

21. Do physical barriers limit access to the school site?

Physical barriers are things that discourage people from walking and biking, even if the distance traveled is short. Examples include railroad tracks, highways, large industrial sites, roads with speed limits higher than 40 miles per hour, water bodies, and steep terrain. Some physical barriers may require “safety busing” to safely transport children to school. Generally speaking, the closer a physical barrier is to the school, the more safety busing is required. School sites located in areas with few or no physical barriers

Within a 1/2-mile radius of the school site, how many physical barriers limit access to the school site?

Score (Question 21):

Comments/Notes:

3 Sides= 6
2 sides= 3
1 side= 0

No barriers= 12
1-2 barriers= 0
3 barriers= (-12)
What was your score?

- MAX High +66/
- MAX Low -44
- Share your observations
- What issues emerged?

Site Scores *(should be compared against the site scores generated for other candidate sites)*

<table>
<thead>
<tr>
<th>Worksheet</th>
<th>Overall Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Proximity to Students and Population Centers</td>
<td>29</td>
</tr>
<tr>
<td>3 Location in the Community</td>
<td>-28</td>
</tr>
<tr>
<td>4 Site Characteristics</td>
<td>31</td>
</tr>
<tr>
<td>5 Connectivity with the Neighborhood</td>
<td>-1</td>
</tr>
<tr>
<td>6 Bike and Pedestrian Accessibility</td>
<td>11</td>
</tr>
</tbody>
</table>

* Incomplete: not all factors scored
Reflections & Insights

Exercise #4
Site Comparison Workbook Detail
<table>
<thead>
<tr>
<th>Workbook Section</th>
<th>Information Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of school need and site</td>
<td>• District and site identifiers
• Grades to be served, capacity</td>
</tr>
<tr>
<td>Proximity to students and population</td>
<td>• District demographics
• Geographic information
• Neighborhood demographics</td>
</tr>
<tr>
<td>Location in the community</td>
<td>• Community development plans
• Infrastructure</td>
</tr>
<tr>
<td>Site characteristics</td>
<td>• Potential neighborhood impacts
• Shared use opportunities</td>
</tr>
<tr>
<td>Connectivity with neighborhood</td>
<td>• Neighborhood street network</td>
</tr>
<tr>
<td>Bike and pedestrian accessibility</td>
<td>• Condition and safety of pedestrian and bike networks/facilities</td>
</tr>
<tr>
<td>Cost calculators</td>
<td>• Planning-level capital cost estimates (by source of funds)
• Planning-level O&M cost estimates (by who pays)</td>
</tr>
</tbody>
</table>
Design:

- User-friendly downloadable Excel file
- Site summary sheet, 5 worksheets with 25 multiple choice questions, and two cost calculators
- High-level and detailed summary sheets

Site comparison factors:

- Proximity to students and population centers
- Location in the community
- Beneficial site characteristics
- Connectivity with the neighborhood
- Bike and pedestrian accessibility
- One-time capital and recurring annual costs

Typical question format
Table Team Exercise #5:

Workbook Detail

Utilize the site you considered for Exercise #4
Open a live version of the workbook
Enter data for as many areas as possible
Utilize comments section as placeholder for insights
Change responses to compare outcomes
Reflections & Insights

Exercise #5
Conclusion
Why Use the Smart School Siting Tool

The tool...

- Identifies opportunities and reasons to collaborate
- Includes questions of interest to different stakeholders
- Helps organize and synthesize information
- Helps focus dialogue and facilitate collaboration

To...

- Engage a more diverse group of stakeholders
- Encourage more holistic analysis of opportunities and impacts
- Foster and facilitate collaboration
- Support (not supplant) community decision-making
Why will you apply what you have learned today?

How will you share your results with others?

How can this tool be more effective?

What would make it easy to get this tool in use across the nation?

What would motivate communities to use this tool?

What other information should be considered?
The Smart School Siting Tool is available at:
http://www.epa.gov/smartgrowth/smart-school-siting-tool

For more information, please contact:

Regina Langton
EPA Office of Sustainable Communities
Washington, DC
(202) 566-2178
langton.regina@epa.gov